top of page

AGOtechnology Group

Public·31 members

Byte !!TOP!!

The byte is a unit of digital information that most commonly consists of eight bits. Historically, the byte was the number of bits used to encode a single character of text in a computer[1][2] and for this reason it is the smallest addressable unit of memory in many computer architectures. To disambiguate arbitrarily sized bytes from the common 8-bit definition, network protocol documents such as the Internet Protocol (.mw-parser-output cite.citationfont-style:inherit; .citation qquotes:"\"""\"""'""'".mw-parser-output .citation:targetbackground-color:rgba(0,127,255,0.133).mw-parser-output .id-lock-free a,.mw-parser-output .citation .cs1-lock-free abackground:url("//")right 0.1em center/9px .id-lock-limited a,.mw-parser-output .id-lock-registration a,.mw-parser-output .citation .cs1-lock-limited a,.mw-parser-output .citation .cs1-lock-registration abackground:url("//")right 0.1em center/9px .id-lock-subscription a,.mw-parser-output .citation .cs1-lock-subscription abackground:url("//")right 0.1em center/9px .cs1-ws-icon abackground:url("//")right 0.1em center/12px .cs1-codecolor:inherit;background:inherit;border:none; .cs1-hidden-errordisplay:none; .cs1-maintdisplay:none;color:#3a3; .citation .mw-selflinkfont-weight:inheritRFC 791) refer to an 8-bit byte as an octet.[3] Those bits in an octet are usually counted with numbering from 0 to 7 or 7 to 0 depending on the bit endianness. The first bit is number 0, making the eighth bit number 7.


The size of the byte has historically been hardware-dependent and no definitive standards existed that mandated the size. Sizes from 1 to 48 bits have been used.[4][5][6][7] The six-bit character code was an often-used implementation in early encoding systems, and computers using six-bit and nine-bit bytes were common in the 1960s. These systems often had memory words of 12, 18, 24, 30, 36, 48, or 60 bits, corresponding to 2, 3, 4, 5, 6, 8, or 10 six-bit bytes. In this era, bit groupings in the instruction stream were often referred to as syllables[a] or slab, before the term byte became common.

The unit symbol for the byte was designated as the upper-case letter B by the International Electrotechnical Commission (IEC) and Institute of Electrical and Electronics Engineers (IEEE).[10] Internationally, the unit octet, symbol o, explicitly defines a sequence of eight bits, eliminating the potential ambiguity of the term "byte".[11][12]

The term byte was coined by Werner Buchholz in June 1956,[4][13][14][b] during the early design phase for the IBM Stretch[15][16][1][13][14][17][18] computer, which had addressing to the bit and variable field length (VFL) instructions with a byte size encoded in the instruction.[13]It is a deliberate respelling of bite to avoid accidental mutation to bit.[1][13][19][c]

Another origin of byte for bit groups smaller than a computer's word size, and in particular groups of four bits, is on record by Louis G. Dooley, who claimed he coined the term while working with Jules Schwartz and Dick Beeler on an air defense system called SAGE at MIT Lincoln Laboratory in 1956 or 1957, which was jointly developed by Rand, MIT, and IBM.[20][21] Later on, Schwartz's language JOVIAL actually used the term, but the author recalled vaguely that it was derived from AN/FSQ-31.[22][21]

The development of eight-bit microprocessors in the 1970s popularized this storage size. Microprocessors such as the Intel 8008, the direct predecessor of the 8080 and the 8086, used in early personal computers, could also perform a small number of operations on the four-bit pairs in a byte, such as the decimal-add-adjust (DAA) instruction. A four-bit quantity is often called a nibble, also nybble, which is conveniently represented by a single hexadecimal digit.

In the International System of Quantities (ISQ), B is the symbol of the bel, a unit of logarithmic power ratio named after Alexander Graham Bell, creating a conflict with the IEC specification. However, little danger of confusion exists, because the bel is a rarely used unit. It is used primarily in its decadic fraction, the decibel (dB), for signal strength and sound pressure level measurements, while a unit for one-tenth of a byte, the decibyte, and other fractions, are only used in derived units, such as transmission rates.

More than one system exists to define larger units based on the byte. Some systems are based on powers of 10, following the International System of Units (SI), which defines for example the prefix kilo as 1000 (103); other systems are based on powers of 2. Nomenclature for these systems has been the subject of confusion. Systems based on powers of 10 reliably use standard SI prefixes (kilo, mega, giga, ...) and their corresponding symbols (k, M, G, ...). Systems based on powers of 2, however, might use binary prefixes (kibi, mebi, gibi, ...) and their corresponding symbols (Ki, Mi, Gi, ...) or they might use the prefixes K, M, and G, creating ambiguity when the prefixes M or G are used.

While the numerical difference between the decimal and binary interpretations is relatively small for the kilobyte (about 2% smaller than the kibibyte), the systems deviate increasingly as units grow larger (the relative deviation grows by 2.4% for each three orders of magnitude). For example, a power-of-10-based yottabyte is about 17% smaller than power-of-2-based yobibyte.

A system of units based on powers of 2 in which 1 kibibyte (KiB) is equal to 1,024 (i.e., 210) bytes is defined by international standard IEC 80000-13 and is supported by national and international standards bodies (BIPM, IEC, NIST). The IEC standard defines eight such multiples, up to 1 yobibyte (YiB), equal to 10248 bytes. The natural binary counterparts to ronna- and quetta- were given in a consultation paper of the International Committee for Weights and Measures' Consultative Committee for Units (CCU) as robi- (Ri, 10249) and quebi- (Qi, 102410), but they have not yet been adopted by the IEC and ISO.[36]

An alternate system of nomenclature for the same units (referred to here as the customary convention), in which 1 kilobyte (KB) is equal to 1,024 bytes,[37][38][39] 1 megabyte (MB) is equal to 10242 bytes and 1 gigabyte (GB) is equal to 10243 bytes is mentioned by a 1990s JEDEC standard. Only the first three multiples (up to GB) are mentioned by the JEDEC standard, which makes no mention of TB and larger. The customary convention is used by the Microsoft Windows operating system[40][better source needed] and random-access memory capacity, such as main memory and CPU cache size, and in marketing and billing by telecommunication companies, such as Vodafone,[41] AT&T,[42] Orange[43] and Telstra.[44]

Various computer vendors have coined terms for data of various sizes, sometimes with different sizes for the same term even within a single vendor. These terms include double word, half word, long word, quad word, slab, superword and syllable. There are also informal terms. e.g., half byte and nybble for 4 bits, octal K for 10008.

In December 1998, the IEC addressed such multiple usages and definitions by adopting the IUPAC's proposed prefixes (kibi, mebi, gibi, etc.) to unambiguously denote powers of 1024.[50] Thus one kibibyte (1 KiB) is 10241 bytes = 1024 bytes, one mebibyte (1 MiB) is 10242 bytes = 1,048,576 bytes, and so on.

The IEC adopted the IUPAC proposal and published the standard in January 1999.[52][53] The IEC prefixes are now part of the International System of Quantities. The IEC further specified that the kilobyte should only be used to refer to 1,000 bytes.

Lawsuits arising from alleged consumer confusion over the binary and decimal definitions of multiples of the byte have generally ended in favor of the manufacturers, with courts holding that the legal definition of gigabyte or GB is 1 GB = 1,000,000,000 (109) bytes (the decimal definition), rather than the binary definition (230). Specifically, the United States District Court for the Northern District of California held that "the U.S. Congress has deemed the decimal definition of gigabyte to be the 'preferred' one for the purposes of 'U.S. trade and commerce' [...] The California Legislature has likewise adopted the decimal system for all 'transactions in this state.'"[54]

The C and C++ programming languages define byte as an "addressable unit of data storage large enough to hold any member of the basic character set of the execution environment" (clause 3.6 of the C standard). The C standard requires that the integral data type unsigned char must hold at least 256 different values, and is represented by at least eight bits (clause Various implementations of C and C++ reserve 8, 9, 16, 32, or 36 bits for the storage of a byte.[64][65][g] In addition, the C and C++ standards require that there are no gaps between two bytes. This means every bit in memory is part of a byte.[66]

In data transmission systems, the byte is used as a contiguous sequence of bits in a serial data stream, representing the smallest distinguished unit of data. A transmission unit might additionally include start bits, stop bits, and parity bits, and thus its size may vary from seven to twelve bits to contain a single seven-bit ASCII code.[67] 041b061a72


Welcome to the group! You can connect with other members, ge...
bottom of page